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EXECUTIVE SUMMARY

Due to their high strength and stiffness-to-weight ratios, laminated composite materials are
increasingly being used in the aerospace industry.  However, due to the lack of through-the-
thickness reinforcement, structures made from these materials are highly susceptible to failures
caused by delamination growth.  Therefore, in order to maximize durability and damage
tolerance, a structure’s resistance to delamination should be addressed within the design process.
By gaining an understanding of what causes delaminations to initiate and grow, a predictive
methodology can be developed and used by designers to select structural configurations where
the propensity for delamination is minimized.  In addition, such a predictive methodology would
be useful for assessing the criticality of service-induced delaminations that have been detected.

The current, state-of-the-art methodology for predicting delamination growth is lacking in three
respects.  First, it is extremely labor intensive, both in terms of man-hours and computational
effort.  For this reason alone, the aerospace industry has been reluctant to adopt it.  Second,
experimental verifications of the methodology are almost nonexistent.  Third, and perhaps most
importantly, the methodology that is used for laminated composites is primarily a carryover from
that used for metals.  However, the mechanisms that occur during delamination growth in
composites are often quite different from those that occur during crack propagation in metals,
and in certain instances the current approach is not appropriate.  This issue is not generally
recognized, however, precisely because there has not been a great deal of experimental
verification of the state-of-the-art method.

This report describes a predictive methodology for delamination growth that overcomes all of the
above drawbacks of the state-of-the-art approach.  First, the method is simple to implement for
most practical geometries.  Due to this simplicity, a large number of locations can be examined
for the propensity for delaminations to grow.  Thus, the method can be applied during the design
process or for discrete damages found from service usage.  Second, the method has been verified
by an extensive amount of testing.  Third, the theory utilizes assumptions that are consistent with
the mechanics of the growth of delaminations in laminated composites, and failure predictions by
this new method agree quite well with preliminary experimental results.  Thus, there is a great
expectation that this new methodology will provide a powerful tool that can rapidly be integrated
into current engineering environments.

This report is envisioned to be the first of a two-part series.  In this first part, the theoretical
development of the method is presented, and experimental results are shown for a single material
for a variety of relatively standard test geometries.  In the second part, the method will be applied
to other materials as well as geometries that are more representative of those found in typical
aircraft structures.
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1.  INTRODUCTION.

Despite the relatively widespread attention given to the problem of delamination in laminated
composites, significant fundamental as well as computational problems still remain with most
current approaches to predict this failure mode.  In order to assess for possible delamination
growth in a given structural geometry, it is generally accepted that one can analytically or
numerically determine the total strain energy release rate along a delamination front and compare
these results, at the appropriate mode mix, to an experimentally determined toughness [1-3].
Here, the term “mode mix” is used to denote the relative percentages of the mode I (opening
mode) and mode II (shearing mode) components of the total energy release rate.  However, there
are significant problems with this procedure, most notably in the determination of mode mix and
in the associated determination of toughness.  For example, for most practical geometries, mode
mixity determination is an extremely computationally intensive procedure and requires very
detailed two- or three-dimensional finite element analyses of the crack tip region for each
delamination location and loading of interest. [1]  Thus, in many instances, computational
requirements alone make it relatively impractical to make delamination growth assessments at a
large number of locations.  Additional difficulties involve the definition of mode mix.  If a
classical, linear elastic fracture mechanics definition is adopted, then for most cases of practical
interest where delaminations occur between plies with dissimilar orientations, a mode mix based
on conventional energy release rate (ERR) components cannot be defined.  In these instances, a
linear elastic analysis that models individual plies as equivalent homogeneous layers will predict
that an oscillatory stress singularity exists at the delamination front.  This oscillatory field
complicates the implementation of any predictive methodology.  Finally, even if one chooses to
go forward and to perform the necessary computations, recent experimental evidence [3-6]
indicates that a predictive methodology using ERR and the singular field-based definition of
mode mix may be inaccurate for many fibrous composites.  This is because many composites
exhibit large damage zones in the vicinity of the delamination front, in which case the concept of
a singular zone does not apply.  Thus, it is observed experimentally that the toughness of most
laminated composites is dependent upon the type of loading; however, for use in a predictive
methodology, the singular field-based definition of mode mix is often not appropriate.

In this report, an engineering methodology is described for use in making delamination growth
assessments in laminated composite structures.  The methodology contains two primary
components.  First, the toughness versus mode mix relation, and the definition of mode mix
itself, is determined experimentally.  The definition of mode mix that is sought is the one that,
when applied to all experimental results, produces a single-valued toughness versus mode mix
curve.  That is, the definition must be such that different geometries that are predicted to be at the
same mode mix display the same toughness.  The mode mix definition is found from the results
of a series of delamination toughness tests and is obtained within the construct of a crack tip
element analysis.  This approach allows for the possibility that the singular field-based
decomposition is valid; it also allows for the possibility that an alternative definition is valid.
This alternative definition is based on parameters that uniquely define the loading at the crack tip
but which are insensitive to the details of the near-tip damage.  The second component of the
methodology described herein consists of analyzing the structure of interest and assessing
delamination growth.  This is also done using the crack tip element analysis and incorporates the
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experimentally determined definition of mode mix.  Note that this approach obviates the need for
locally detailed  two- and three-dimensional finite element analyses.

2.  CRACK TIP ELEMENT ANALYSIS.

2.1  TOTAL ENERGY RELEASE RATE.

Consider the crack tip element of figure 1.  This element is assumed to represent a three-
dimensional portion of the crack tip region in a general interfacial fracture problem.  It is
assumed that the crack lies locally in the x-y plane at constant z.  The crack front may be straight
or curved; however, the length of the element in the y direction is assumed to be sufficiently
short such that there is no significant variation in the loading and in the orientation of the edges
of the element with respect to y.  It is further assumed that the lengths of the cracked and
uncracked regions comprising the element are large with respect to their thicknesses but are
sufficiently small such that geometric nonlinearities are negligible.  Thus, classical plate theory
(CPT) may be used to predict the overall deformations and strain energies of the element.  The
derivation below essentially follows that which is presented in reference 1.  For simplicity of
presentation, it is assumed that the element is in a state of plane stress or plane strain with respect
to the y coordinate direction.  The three-dimensional analysis is described in reference 7 and is
presented in detail in reference 8.  For later use within this report, some specific results for the
three-dimensional case are taken from reference 8 and are given following the derivation below.

t t1

t2z

x

M 1

M 2

N 1

N 2

N

M

ab

FIGURE 1.  CRACK TIP ELEMENT AND LOCAL LOADING

In classical plate theory, deformations are defined entirely by midsurface strains and curvatures.
For the uncracked portion of the element, the equations relating these midsurface strains and
curvatures to the load and moment resultants are given by

κε
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DBM

BAN
o

o

+=
+=
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Or, in their inverted form
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κ
ε (2)
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where εo is the strain in the x direction and κ is the plate theory curvature (= −∂2w/∂x2) of the
uncracked region.  N and M are the load and moment resultants per unit width, respectively, and
are defined positive as shown in figure 1.  The coupling modulus, B, and compliance, B′, will be
zero for problems in which the uncracked region possesses midplane symmetry.  A homogeneous
material is one special case.  However, it may be that laminated composites do not possess
midplane symmetry and will therefore have nonzero coupling coefficients.

For the region above the crack plane (plate 1) or below the crack plane (plate 2), the midsurface
strains and curvatures are related to the load and moment resultants by

,ii
o
iii BAN κε += 2,1=i

,ii
o
iii DBM κε += 2,1=i (3)

Or, in their inverted form

,iiii
o
i MBNA ′+′=ε 2,1=i

,iiiii MDNB ′+′=κ 2,1=i  (4)

where εi
o is the midplane strain in the x direction in plate i, κi is the curvature in the x direction

of plate i, and N1, N2, M1, and M2 are positive as shown in figure 1.  The subscript i is not
summed in equations 3 and 4.

It has been shown [1, 7] that the loading on the crack tip element which produces the stress
singularity can be fully characterized in terms of a concentrated crack tip force, Nc, and moment,
Mc.  The concentrated crack tip force and moment are found by enforcing the condition that the
displacements of the upper and lower plates be compatible along the crack plane over -b < x < 0.
The ERR of the crack tip element is obtained through a modified virtual crack closure method
and may be expressed in terms of Nc and Mc, rather than the four independent quantities N1, N2,
M1, and M2.  This gives [1, 7]
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The concentrated crack tip force and moment are given by

MaNaNNc 12111 ++−= (8)
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and t1 and t2 are the thicknesses of plates 1 and 2 as shown in figure 1.

2.2  MODE DECOMPOSITION ACCORDING TO THE CLASSICAL DEFINITION.

To decompose the total ERR, equation 5, into its mode I and mode II components, G is first
related to the modulus of the in-plane complex stress-intensity factor, K.  Next, K is written in
terms of Nc and Mc.  Since this expression must be linear, two unknown constants of
proportionality are introduced.  These may be determined, apart from a phase angle, by equating
the expression for G given by equation 5 to that obtained when G is expressed in terms of K and
K is expressed in terms of Nc and Mc.  This gives the following expression for the stress-intensity
factor [1]

( ) Ω−Γ+





= iii

cc eLecMciN
H

K επε 21
11

cosh
2

2
1

(11)

Here, Ω is a yet-to-be-determined mode mix parameter and ε is the bimaterial constant, given by

( )
( )






+
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=

β
β

π
ε

1

1
ln

2

1
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which vanishes when the material properties immediately above and below the crack plane are
the same.  In this case, the stress field is found to have an inverse-square root singularity,
whereas when ε≠0 the singularity is predicted to be oscillatory. [1]  Notice that ε=0 when β=0,
where β is a generalization of one of Dundurs’ parameters [9] for isotropic materials and is given
by [1, 10]
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( )[ ] ( )[ ]( )( ) 2
1

2
1

2
1

331111333112133311
−+−+= HHssssssβ (13)

where ( )[ ] ( )[ ]233111331111
2

1
4

1
2

1
4

1

22 ssnssnH λλ += (14)

and ( )[ ] ( )[ ]233111331133
2

1
4

1
2

1
4

1

22 ssnssnH −− += λλ (15)

The subscripts 1 and 2 used outside the square brackets in the expressions for β,  H11, and H33

refer to the materials immediately above and below the crack plane, respectively.  In the case of
laminated materials, these are the two plies or ply groups bounding the delamination.  The
nondimensional parameters λ and n are given by

33

11
s

s=λ (16)

and ( )[ ] 2
1

12
1 ρ+=n (17)

where ( )( ) 2
1

331155132
1 2 −+= ssssρ (18)

Material compliances are defined in the conventional sense; that is, the stress-strain relations for
either material (immediately above or below the crack plane) are assumed to be of the form

jiji s σε = (19)

Standard contracted notation is used. [11]  Using sij  as defined in equation 19 gives plane stress
results; plane strain values are obtained by replacing sij  by s′ij , where

22

22

s
ss

ss ji
ijij −=′ (20)

To decompose the stress-intensity factor, equation 11, into its mode I and mode II components,
the following definition is used [1, 12]

III
i iKKLK +=εˆ (21)

where L̂  is a fixed dimension that does not scale with the size of the body and is used for
fracture characterization of that interface. [1, 12]  Using the above definitions, the in-plane phase
angle of the stress-intensity factor, or mode mixity, ψ, is given by

I

II
K

K=ψtan (22)

Guided by equation 21, the mode I and mode II ERRs are given by [1]
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( )[ ]2ˆcosˆsin
2

1
21 Γ+Ω+Ω−= cMcNG ccI (23)

and ( )[ ]2ˆsinˆcos
2

1
21 Γ+Ω+Ω= cMcNG ccII (24)

where Ω̂  is defined as




+Ω=Ω L
L̂lnˆ ε (25)

In equations 11, 21, and 25, L̂  is a fixed dimension, regardless of the body being analyzed,
whereas L is a characteristic dimension that scales with the body.  Equation 25 ensures that
equations 11, 21, and 22 will predict the correct mode mix for those cases where an oscillatory
singularity exists.  That is, Ω is determined for a specific crack tip element geometry and is based

on the characteristic dimension L.  The scaling of Ω̂  given by equation 25 ensures that the same
Ω will predict the correct mode mix for arbitrary loadings of a geometrically similar element
with different absolute dimensions. [1]  When ε≠0, an oscillatory singularity is predicted, and GI

and GII are dimensionally convenient generalizations of their classical definitions; the use of
these parameters in crack growth problems is similar to the use of the complex stress-intensity
factor.  When ε=0, an inverse-square root singularity is predicted and GI and GII retain their

classical definitions.  Also, when ε=0, Ω=Ω̂  (cf. equation 25) and for notational purposes, it is

convenient to make this substitution in equations 23 and 24.  Regardless of the value of Ω̂ , the
sum of equations 23 and 24 will always equal that given by equation 5.

If the preceding analysis is carried out in three dimensions [8] and the two cracked and one
uncracked region of the element are specially orthotropic (A16 = A26 = Bij  = D16 = D26 = 0 in
conventional [11] notation), then the mode III ERR, GIII , is obtained as [8]

( )23

2

y

cIII N
c

G = (26)

where 2
66

1
66

3

11
AA

c += (27)

and ( )2
6

1
6
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1
661

6 NN
A

A
NN

u
y
c ++−= (28)

In equations 26, 27, and 28, Nc
y is the second concentrated crack tip force, which acts in the

plane of Nc but perpendicular to it, that arises for three-dimensional problems. [7, 8] The
superscripts 1, 2, and u in the above equations indicate that these values are for the cracked
region that is above the crack, the cracked region below the crack, or the uncracked region,
respectively.  Also, A66 and N6 are defined using their conventional definitions for in-plane shear
stiffness and shear force per unit length, respectively, for a laminated plate. [11]  It is pointed out
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that a more general expression for GIII  has been derived [8] where the restrictions of special
orthotropy are removed.  However, only the specially orthotropic case will be considered herein,
and for this reason the considerably more complicated general equations are not presented.

2.3  ALTERNATIVE DEFINITIONS OF MODE MIX.

In the preceding subsection, an assumption of a near-tip singular zone was made for mode
decomposition that was not necessary for the determination of total ERR.  Rather, for total ERR
it need only be assumed that classical plate theory is appropriate for determining far-field
stresses, strains, and strain energies.  Thus, one could obtain G, and also choose to decompose it,
without assuming that a singular field exists.  Such a decomposition could be accomplished, for

example, by choosing an Ω̂  that does not coincide with the singular field-based value and would
partition the total ERR into non-classical mode I and mode II components.  This issue is
discussed below.

For those laminated composites where the assumption of a singular zone applies, Ω̂  may be
chosen such that the crack tip element (CTE) and the classical, singular field (SF) solution

coincide.  A method for doing this is described in references 1 and 13 and tabulated results for Ω̂
for a variety of crack tip element geometries are presented in reference 1.  It will be shown in

sections 3 and 4 of this report that, when Ω̂  is chosen in this manner, the CTE predictions
coincide quite closely to the finite element (FE) results for problems where inverse-square root as
well as oscillatory singularities exist.  Problems where the SF-based approach is valid to predict
delamination growth consist of those materials, structures, and loading geometries where the
length of the near-tip process zone is small compared to the radius of the singular zone.
Typically, this latter radius is scaled by the smallest characteristic dimension in the problem,
which for unidirectional laminates is generally the thickness of one of the cracked regions and for
multidirectional laminates is generally the single ply thickness.

When the size of the process zone is not small compared to the smallest characteristic dimension
in the problem, then the concept of a singular zone no longer applies.  That is, the expressions for
the near-tip stresses, strains, and displacement fields may be quite different from those given by
the classical SF-based result; thus, the SF mode mix is not appropriate for these cases.  It is likely
that different geometries that this method predicts to be at the same mode mix will display
different toughnesses.  When this occurs, a different definition of mode mix is required. This
definition should reflect the dependence of toughness on the remote loading in such a manner
that different geometries that are predicted to be at the same mode mix display the same
toughness.  The concentrated crack tip moment, Mc, and shear forces, Nc and Nc

y, which are
computed as part of the crack tip element analysis appear to be well-suited for this purpose.
These quantities do not depend on the existence of a singular zone, they can be used to directly
express ERR, and they are not affected by the near-tip damage state.  However, the concentrated
crack tip moment and shear forces have different units.  Thus, if these quantities were used
directly, i.e., by expressing Gc as Gc(Nc/Mc), then the resulting toughness versus mode mix curve
would be sensitive to changes in geometry and therefore would not be suited to characterizing
crack growth in a manner that would be useful in a predictive methodology.  If a dimension (such
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as a single ply thickness) were introduced to nondimensionalize Nc/Mc, there is no guarantee that
this ratio would provide the desired result.

A better approach, and in the same spirit, is based on equations 23 and 24 and an effective value

of Ω (used here in lieu of Ω̂ ).  The effective Ω provides the necessary scaling normalization for
the influence of Nc/Mc and contains the solution with a singular zone as a special case.  As
energy release rate, equation 5, is independent of Ω and the existence of a singular zone, the key
issue is whether an expression for Ω can be obtained that will account for the dependence of the
toughness on the geometry of the near-tip region (layup, stacking sequence, and delamination
location) and its local loading. This effective value of Ω, used with equations 23 and 24, will
result in a non-classical partitioning of the total energy release rate that is implicitly based on the
ratio of Nc/Mc.  The implicit, rather than explicit, dependence on Nc/Mc is primarily due to a
current lack of understanding of the exact physics controlling the conditions for the onset of
crack advance in this type of a material.  As such, at present, the effective value of Ω (or Ω-
effective, as may be used subsequently) can only be obtained experimentally.  A method for
doing this is described and illustrated in section 5.4.2.

Finally, it is pointed out that, for those materials with small process zones, use of Ω-effective
may be used to circumvent the practical problems associated with the oscillatory singularity.
That is, a mode mix definition based on the singular oscillatory field is a special case of the Ω-
effective approach.  The β=0 approach, which has been proposed [1, 14] for materials with
relatively small process zones for predicting delamination growth at interfaces where there is an
oscillatory singularity, is also a special case of the Ω-effective approach.  As such, the
determination of an Ω-effective for use with the CTE equations is a robust methodology and can
be used for general application without regards to the process zone size or the existence or nature
of the singularity.

3.  EXAMPLE PROBLEMS IN TWO DIMENSIONS.

3.1  INSTABILITY-RELATED DELAMINATION GROWTH.

The problem of instability-related growth of a through-width delamination may be solved
analytically by using a global cylindrical buckling analysis along with a local crack tip element
analysis. [15]  Figure 2 shows a cross-sectional view of a laminate containing two delaminations.
These delaminations are assumed to be located symmetrically with respect to the laminate’s
midplane, and the laminate is assumed to be midplane symmetric.  The delaminated regions,
defined to be the regions bounded by the delaminations and the laminate free surfaces, may or
may not be symmetric about their local midplanes.  The delaminations are assumed to extend
through the entire width of the laminate and the laminate is assumed to be in a state of plane
stress or plane strain with respect to the y coordinate direction.  Note that as the base region,
defined to be the portion of the laminate bounded by the two delaminations, becomes very thick,
the present problem degenerates to the commonly considered thin film geometry. [16, 17]  It is
assumed that for all cases being considered, the delaminated regions have slenderness ratios
which are large compared to that of the base region and that under applied compressive load or
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displacement, local instabilities that occur in the delaminated regions are not accompanied by any
associated bending or instability in the base region or global laminate.

a

Z
P P

X

Delaminat ions

FIGURE 2.  CROSS-SECTIONAL VIEW OF LAMINATE CONTAINING TWO
SYMMETRICALLY LOCATED DELAMINATIONS THAT IS SUBJECTED TO

COMPRESSIVE LOADING

For a specified value of globally applied load or displacement, the deformations and local force
and moment resultants in the delaminated and base regions may be obtained by a cylindrical
buckling analysis. [15, 17]  The postbuckled laminate appears as shown in figure 3a, with all
internal force and moment resultants shown in their positive conventions (the actual in-plane
forces are compressive in this problem and therefore the reverse of those shown in figure 3a).
The right-hand edge of the laminate of figure 3a corresponds to the center of the delamination.
Thus, by symmetry, the load resultants in the delaminated and base regions, Nx

D and Nx
B

respectively, act in the horizontal direction.  These resultant forces, as well as the resultant
moment in the delaminated region, Mx

D, and its center-point deflection, W, are given as a
function of applied load or displacement by the cylindrical buckling analysis.  By symmetry, the
moment in the base region is zero.

W

a/2

t1

t2

M x
D

N x
D

N x
BN x
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t1

W

M x
D

N x
D

FIGURE 3a.  POST-BUCKLED CONFIGURATION
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Figure 3b shows the crack tip element and local loading.  The element is assumed to be cut from
the laminate very near the crack tip.  Note that minor modifications to the crack tip element
formulation described in section 2 need to be made to enforce the symmetry constraints.  The
crack tip element analysis is linear; all nonlinearities in the problem are accounted for by the
loading on the element.  That is, a comparison of figures 3a and 3b indicates that the loads, N,
N1, and N2, and moment, M1, acting on the crack tip element are given by

WNMMNNN
N

NNN
D

x

D

x

B

xD

x −=+=== 12121 2
(29)

Substituting these loads into the crack tip element equations provides an analytical methodology
for determining mixed-mode energy release rates as a function of the applied far-field loading.

l 1l 2

N

M 1

N 1

N 2
t2/2

t1

FIGURE 3b.  CRACK TIP ELEMENT AND LOADING FOR DELAMINATION BUCKLING
PROBLEM

Figures 4a and 4b present comparisons for total energy release rate and mode ratio between the
crack tip element analysis and a geometrically nonlinear finite element analysis. [15]  The
geometry is a [02/90/02]3s graphite/epoxy laminate with delaminations at the interfaces between
the 5th and 6th and 25th and 26th plies.  The delamination length, a, is equal to 50.8 mm and the
laminate length is 146.0 mm.  The laminate is assumed to be in a state of plane strain.  The
horizontal axis, denoted as applied compressive strain, is the deformation of one of the loaded
ends of the laminate (the center-point is assumed to be fixed with respect to in-plane

deformations) divided by the laminate half-length.  The value of Ω̂  used in the crack tip element
equations was 14.6º and was found by a linear finite element analysis of the crack tip element
geometry.  Note that, since delamination growth occurs at a 0/0 interface, the stress singularity in
this problem obeys a classical inverse-square root relation.
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FIGURE 4a.  COMPARISON OF TOTAL ERR FOR A [02/90/02]3S LAMINATE
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Note from figures 4a and 4b that essentially the same values of energy release rate and mode
ratio are predicted by the crack tip element and finite element methods.  The energy release rate
is seen to be predominantly mode II with the ratio GII/G increasing with increasing applied
compressive strain.  As the applied strain continues to increase, GII/G →1; this is followed by
crack face contact.  Both the finite element and crack tip element analyses predict crack face
contact to occur at the same value of applied strain (for the crack tip element analysis, this occurs
when KI ≤ 0).  To obtain energy release rates beyond this point, crack face contact constraints,
along with an accounting for frictional effects, are required.

In this and other similar examples showing the correlations between crack tip element and
nonlinear finite element analyses for the instability-related delamination growth problem [15],
the utility of the crack tip element approach is clear.  Only a single, linear finite element analysis
need be performed to obtain Ω; thereafter, all results are generated analytically.  For certain
specific problems, no finite element analyses are required, as the value of Ω may be taken
directly from reference 1.  Conversely, the nonlinear finite element model contained
approximately 13,600 global degrees of freedom and was extremely time-consuming to develop
and run.  The use of the crack tip element analysis, along with an appropriate mixed-mode
delamination growth law, has been shown to accurately predict the onset of delamination growth
in instability-related delamination growth experiments on honeycomb sandwich panel
laminates. [18]

3.2  FREE EDGE DELAMINATION.

The problem of free edge delamination under combined in-plane, bending, and/or hygrothermal
loading may also be solved using the crack tip element approach. [14, 19, and 20]  Figure 5
shows a midplane symmetric laminate with a single delamination at its free edge.  With reference
to the figure, the term “sublaminates” is used to denote the regions bounded by the delamination
and the laminate’s free surfaces.  It is assumed that the delamination length, a, is large compared
to the thickness of either of the sublaminates.  In what follows, only cases of a laminate subjected
to hygrothermal loading and/or a uniform axial strain in the x1 direction are considered.  The
more general case, where bending loads are included, is presented in references 19 and 20.

x2

z

x1

a

Delaminat ion

FIGURE 5.  LAMINATE CONTAINING A FREE EDGE DELAMINATION
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In order to obtain the local crack tip element loading, the classical laminated plate theory solution
to the uncracked laminate under uniform axial strain or hygrothermal loading is first obtained.  A
transverse stress distribution is obtained for which the resultant transverse force, N2, and
moment, M2, vanish along those faces of the laminate which are defined by a normal vector in
the positive or negative x2 direction.  Now a crack is introduced at an arbitrary interface.  In order
to account for the presence of the crack, the resultant transverse forces and moments along the
free edge of each of the sublaminates, as well as the shear and normal stresses along the crack
plane, must now vanish.  To achieve this, the solution to the problem where the sublaminates are
loaded by transverse forces and moments which are equal and opposite to those which are given
by the uncracked solution is superposed onto the solution to the uncracked laminate.  For a single
delamination, this superposition problem is the crack tip element; for symmetrically located
delaminations, the superposition problem is a modified crack tip element [14, 20] which is
similar to that used for the instability-related delamination growth problem.  The forces and
moments in the superposition problem are found by appropriate integration of the stress field
from the classical laminated plate theory solution for the uncracked laminate and loading of
interest. [14, 19 and 20]  Since the ERR for the uncracked laminate is zero, the total ERR and
mode mix are equal to those for the crack tip element superposition problem. [14, 19, and 20]

As an example, consider the determination of the energy release rate in a [45/0/-45/90]s

T300/5208 laminate with delaminations at both -45/90 interfaces.  The laminate is subjected to a
uniform strain, εo = 0.00652, in the global x1 direction.  The value of the energy release rate for
various percentage weight gains of moisture and a residual thermal stress due to a cool down of
-156ºC are presented in figure 6.  Also presented in figure 6 are finite element results taken from
reference 21.  As expected, essentially the same values are predicted.  Complete details of this
analysis are presented in reference 14.

0

20

40

60

80

100

120

0.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40

Percent Moisture Increase

Finite element analysis

Crack tip element analysis

FIGURE 6.  ERR VERSUS HYGROSCOPIC LOADING FOR A [45/0/-45/90]S T300/5208
LAMINATE WITH EDGE DELAMINATIONS AT BOTH -45/90 INTERFACES



14

Next, consider the case of edge delamination in a [0/±35/90]s T300/5208 laminate under
mechanical, thermal, and hygroscopic loadings.  Delaminations are assumed to exist at both
-35/90 interfaces.  Due to the dissimilar material properties above and below these interfaces, an
oscillatory stress singularity exists and individual energy release rate components as found by
finite element analyses are dependent upon the level of mesh refinement. [14, 22]  For example,
under a uniformly prescribed axial strain, the mode ratio, GI/G, in this problem has been found to
vary from 0.21 to 0.28, depending upon the size of the elements surrounding the crack tip. [22]
O’Brien, et al. [21] also analyzed this laminate and reported a mode ratio of 0.265 for uniform
axial extension.  Other researchers [23] have also adopted this type of an approach, which can be
considered the mode ratio based on a finite crack extension.  This definition of mode ratio may

also be adopted in the crack tip element analysis by choosing Ω̂  such that GI/G under uniform

axial loading equals 0.265; this correspondence is obtained using Ω̂  = 6.38º. [14]  A comparison
of the crack tip element and finite element predictions for this case is presented in figure 7.
These results are for the [0/±35/90]s laminate at a temperature of 156ºC less than its stress free
temperature and subjected to a uniform axial strain in the x1 direction of εo = 0.00254.  Results
are presented for various levels of moisture absorption.  The finite element results are taken from
reference 21; excellent correlation between these values and the crack tip element predictions is
observed.
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FIGURE 7.  MODE RATIO VERSUS HYGROSCOPIC LOADING FOR A [0/ ±35/90]S

T300/5208 LAMINATE WITH EDGE DELAMINATIONS AT BOTH -35/90 INTERFACES

Also presented in figure 7 are predictions by the crack tip element method and the β=0 approach.
In the β=0 approach, one of the Poisson’s ratios of one of the materials bounding the crack is
changed such that β, and hence ε, equals zero (cf. equation 12).  This gives an inverse-square

root singularity. [1]  Making this modification, one finds =Ω=Ω ˆ 12.04º. [14]  For comparison,
under the case of pure axial extension (no hygrothermal loading), this problem has also been

{ Finite Element analysis

Crack tip element analysis, °=Ω 38.6ˆ

Crack tip element analysis, °=Ω 04.12ˆ
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solved by the FE method and the resin interlayer approach.  In this approach, a thin resin
interlayer is modeled above and below the plane of the crack.  Interestingly, for pure mechanical
loading, both the β=0 approach and the resin interlayer approach predict GI/G = 0.187 [14]; in
view of all of the results to date, identical predictions by these two approaches would also be
expected for the hygrothermal loading cases.  The resin interlayer approach perhaps provides the
most physically appealing results; however, this approach suffers from a number of drawbacks.
These include difficulty in modeling, dependence of fracture mode ratio on resin modulus and
resin thickness, and a change in scale of the singular field. [24]  Conversely, the β=0 approach is
simple to perform, produces a unique value of mode ratio and, for all problems studied to date,
produces a mode ratio that is within those obtained by the resin interlayer approach for physically
realistic values of resin thickness and modulus. [24]  For these reasons, the β=0 approach may be
preferable for general use.

Finally, one could choose to explicitly include ε−based effects in the prediction of fracture.  In
this approach, one would compare the complex stress-intensity factor at a given mode mix,
equations 11 and 22, to the mode mix-dependent critical value.  Alternatively, the total ERR,
given by equation 5, may be compared to its critical value at the appropriate phase angle,
equation 22.  To illustrate the accuracy of the ERR and mode mix predictions by the crack tip
element approach,  table 1 presents comparisons of the total ERR, GT, and the phase angle, ψ, as
obtained by FE and crack tip element analyses for the problem of figure 7 under various applied
loads.  For simplicity, the loading is specified in terms of Mc and Nc.  The material properties
used in these calculations are taken from reference 14.  The phase angle is defined using

1
ˆ tLL == , where t1 is the thickness of the upper delaminated region.  The FE values were

obtained using the modified crack surface displacement method described in reference 1.  The
bimaterial constant, ε, in this problem equals 0.0361, and the mode mix parameter was found,
using the technique described in reference 1, to be Ω = 17.51º.  Excellent correlation between the
FE and crack tip element results is observed.  All cases show correlations in ERR of better than
1.6% and correlations of phase angle of better than 1.7º.  However, due to the large amount of
experimental data that is necessary to support this approach, it is likely better to restrict this type
of prediction methodology to fracture between dissimilar homogeneous materials. [1, 13]

TABLE 1.  COMPARISON OF CRACK TIP ELEMENT (CTE) AND FINITE ELEMENT (FE)
RESULTS FOR ERR AND MODE MIX FOR FREE EDGE DELAMINATION IN A

[0/±35/90]S LAMINATE

Load Nc Mc FE CTE
Case (KN/m) (Nm/m) GT (J/m2) ψ (deg.) GT(J/m2) ψ (deg.)

1 -17.066 0.000 69.54 -72.29 69.23 -72.33
2 -5.144 2.758 70.84 -45.97 71.07 -45.80
3 16.186 5.827 69.05 -1.99 70.12 -1.19
4 28.394 5.516 70.56 42.42 71.03 44.06
5 23.961 1.957 72.64 88.99 72.24 89.07
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4.  EXAMPLE PROBLEMS IN THREE DIMENSIONS.

It is well established that finite width, mode I double cantilever beam test specimens have ERR
distributions such that the ERR is highest at the center of the specimen and lowest at its edges.
[25]  Recently, it has been shown [26] that finite width, mode II end-notched flexure specimens
have ERR distributions such that the ERR is highest at the edges of the specimen and lowest at
its center.  Both of these effects have been shown to be caused primarily by the anticlastic
curvature of the cracked and/or uncracked regions.  As a result of these three-dimensional effects,
mixed-mode loadings of finite width delamination toughness test specimens provide interesting
cases to validate the crack tip element approach in three dimensions.

Consider a homogeneous isotropic test specimen, with Poisson’s ratio equal to 0.3, subjected to
the loading of figure 8.  This problem was analyzed by three-dimensional FE analysis using the
commercially available finite element code Abaqus Version 5.4, licensed from Hibbitt, Karlsson,
and Sorensen, Inc.  Twenty-noded, three-dimensional brick elements were used.  The FE model
had cracked and uncracked regions, a and b respectively in figure 8, that were each 256 units
long.  The thickness of each of the cracked regions, t1 and t2, was 16 units, and the width of the
entire model, W, was 400 units.  All elements in the model were 8 units long in the y direction;
thus, the entire model contained 50 elements across its width.  The mesh in the x-y plane is
shown in figures 9a and 9b.  The meshing technique in the x-z plane was chosen following the
recommendations of reference 1 and is shown in figures 9c and 9d.  The elements at the crack tip
are 1 unit long by 1 unit high in the x-z plane.  All of the elements in the model had length-to-
width, length-to-height, and width-to-height ratios that were between 0.1 and 10.0.  Two
different loading cases were considered:  the first was for applied end moments only (N = 0), and
the second was for applied in-plane loads only (M = 0).  Both the load, N, and moment, M, are
defined on a per-unit-width basis following conventional plate theory notation [11] and are
assumed to be distributed uniformly across the specimen’s width.  Total energy release rates were
obtained by the virtual crack closure technique [27] generalized to three dimensions.  In all cases
that will be presented, ERR components that are obtained by the FE analyses are normalized by
the total ERR for the specimen as obtained by a classical plate theory (CPT) analysis.  In this
approach, the strain energy of each of the three regions comprising the specimen are first
determined by CPT, then summed, and then the resulting expression is differentiated with respect
to crack area.  For the loading where N=0, symmetry arguments dictate that this is a pure mode I
problem, and the mode I ERR given by CPT is

3
1

212

Et

M
GCPT

I = (30)

For the loading where M=0, a CPT analysis yields

Et

N
GCPT

T 2

2

= (31)

where GT is defined as the total ERR (= GI + GII + GIII ).
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Next, these same two problems were analyzed using the crack tip element (CTE) approach.  First,
a FE model was constructed of the problem utilizing nine-noded plate elements that are
formulated such that the nodes are offset with respect to the midplane of the element [28].  The
top portion of the specimen of interest, figure 8, was modeled using plate finite elements that are
formulated such that their nodes lie along their lower surface, and the bottom portion of the
specimen was modeled using elements that are formulated such that their nodes lie along their
upper surface.  The nodes along the crack plane, but in the uncracked portion of the specimen
were constrained to have the same displacements.  All of the plate theory FE models were
constructed and analyzed using COMET (COmputational MEchanics Testbed program),
provided by the computational mechanics branch at the National Aeronautics and Space
Administration’s Langley Research Center.  The plan view of all COMET models looked
identical to those presented in figures 9a and 9b.

The COMET models were run under the prescribed loading, and the plate theory force and
moment resultants were obtained one element away (in the models used, this was one unit away
or t1/16) from the crack tip as a function of y.  These force and moment distributions were used
to obtain Nc, Mc, and Nc

y, and these results were substituted into equations 23, 24, and 26 to
obtain the ERR components.  Subsequently, this will be referred to as the COMET/CTE
procedure.

Figure 10 presents the COMET/CTE ERR predictions in comparison to the conventional, three-
dimensional, 20-noded brick FE model results for the N=0 loading.  ERRs in the figure are
normalized by equation 30.  The specimen’s width is taken to be W and therefore y/W = 0.0 and
1.0 correspond to the free edges (cf.  figure 8).  Note that outstanding correlation is obtained by
the two methods; for a quantitative comparison, the width-averaged ERR as obtained by the
COMET/CTE procedure is 0.15% greater than that obtained from the three-dimensional FE
results.  Here and subsequently, the term “width-averaged” is used to refer to the ERR for the
entire specimen width.  Since all of the elements in the model were of uniform width (8 units in
y), width-averaged values are simply the average of all of the local results.
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Figures 11a and 11b presents comparisons of the results for the M=0 loading.  ERRs in the figure
are normalized by equation 31.  There is no mode I component to the ERR for this loading.
Figure 11a shows the mode II comparisons and evidences excellent correlation except in the
regions very near the free edges where large gradients in the plate theory forces and complex
three-dimensional effects are observed.  In quantitative terms, the width-averaged mode II ERR
as obtained by the COMET/CTE procedure is 1.40% greater than that obtained from the three-
dimensional FE results.  Figure 11b shows the mode III comparison.  Note that the correlation
between the three-dimensional FE results and the COMET/CTE results is excellent in the center
of the specimen but becomes somewhat worse near the edges.  These errors occur due to the
large gradients in N6 that occur in these locations. [7]  In the numerical results that have been
generated to date, it has been observed that the mode III ERRs as obtained by the COMET/CTE
procedure exhibit errors in a boundary region that extends into the plate for approximately two
uncracked plate thicknesses from a free edge.  More refined COMET meshes are currently being
evaluated in an effort to better capture the complex behaviors in this boundary region.  However,
for most practical problems of delamination, proximity to a free edge is not an issue.  Overall, the
accuracy of the COMET/CTE procedure for this mixed-mode problem is quite good; it was
found that the width-averaged total ERR as predicted by this method was 2.58% less than that
obtained from the three-dimensional finite element results.
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5.  EXPERIMENTAL DETERMINATION OF THE DEFINITION OF MODE MIX.

In sections 3 and 4 of this report, the emphasis was on a comparison of CTE and FE results for
energy release rate and mode mix in those materials and structures where a singular zone exists.
However, this will not be the case for many fibrous composites.  In this event, it may not be
appropriate for the dependence of toughness on the loading that is evidenced by the material to
be categorized in terms of the classical, singular field-based mode mix definition.  In other
words, use of the SF definition may produce the result that different structural geometries
predicted to be at the same mode mix do not display the same toughness.  When this is the case, a
series of experiments must be run in order to determine the appropriate definition of mode mix
for the particular material of interest.  The methodology that has been developed is as follows [6,
13]:

a. Fracture tests of midplane symmetric laminates with midplane delaminations are
performed.  As will be discussed subsequently, all of the definitions of mode mix that are
examined herein will reduce to the singular field-based definition for these geometries.

b. Fracture tests of other laminate types are performed.  These data are reduced using a crack
tip element analysis and various definitions of mode mix.  The definition of mode mix is
chosen that, when used on all test data, produces a physically consistent, single-valued
toughness versus mode mix curve.  It follows that this definition would also be used in
structural analyses for that material system.

In the following subsections, brief descriptions are presented of the various test methods used.
Emphasis is on mixed-mode I/II  delamination.  The methodology is then illustrated by
application to a typical graphite/epoxy material.  For completeness, the data generated as part of
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this study are also examined using a singular field-based mode mix decomposition procedure as
obtained from finite element analyses and the virtual crack closure technique. [27]  The accuracy
of the global mode decomposition procedure developed by Williams [29] is examined as well.
Thus, when it is stated that a test geometry is analyzed by the CTE approach, it means that the
mode mix, hereafter used to denote GII/G, is obtained by combining equations 5 and 24 to give
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When it is stated that the CTE/singular field (CTE/SF) result is used, it means that equation 32 is
utilized along with the singular field expression for Ω that is given in reference 1.  It is pointed
out here that the CTE equations do not account for the effect of transverse shear deformations on
the ERR or mode mix, and therefore the CTE/SF solution will not always correspond precisely to
the singular field solution as obtained by an alternative approach, such as the finite element (FE)
method and the virtual crack closure technique (VCCT).  Thus, in what follows, four different
solutions are examined: (1) the FE result, which is likely closest to the exact singular field-based
result (abbreviated as the FE/SF result); (2) the CTE/SF result; (3) the CTE/nonsingular field
(CTE/NSF) result, where equation 32 is used along with an effective value of Ω; and (4) the
global mode mix decomposition procedure developed by Williams. [29]  For approaches (2) and
(3), it is emphasized here that Ω is a function of geometry only.  Thus, only one value may be
used for any given specimen type (stacking sequence and delamination location).  Only
unidirectional laminates will be examined in the example data that is presented.

5.1  TEST METHODS USED:  CENTER-DELAMINATED SPECIMENS.

In order to determine the value of Ω for the laminates with midplane delaminations, consider a
double cantilever beam (DCB) test, as shown in figure 12.  Any reasonable definition of mode
mix would certainly consider this to be a pure mode I test.  For this loading and specimen
geometry, equations 8 and 9 indicate that Mc is equal to the moment in either cracked leg at the
crack tip and Nc = 0.  In order for GII = 0, equation 32 yields Ω = 0.  That is, Ω = 0 for any
midplane symmetric laminate with a midplane delamination. [1]  Thus, the first part of the
experimental procedure consists of using symmetric specimens with midplane delaminations to
determine the toughness versus mode mix relation.  The mode mix may be obtained by FE
analysis, by the CTE analysis with Ω = 0, or by the analysis of Williams. [29]  Small differences
between the various methods will be obtained due to the different ways that transverse shear
deformations are accounted for.  The test methods that were used in this study are described in
the following sections.
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FIGURE 12.  THE DOUBLE CANTILEVER BEAM TEST

5.1.1  Double Cantilever Beam Test.

Double cantilever beam tests may be used to determine the mode I fracture toughness. [30]  The
toughness may be found from the load and deflection data by compliance calibration by using the
fundamental equation between ERR and the derivative of compliance [31]:
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Here, B is the specimen’s width, C is its compliance, and a is the crack length.  Compliance as a
function of crack length may be obtained for each specimen from the slope of its load versus
deflection data.  The method of least squares can be used to curve fit these data and to obtain the
coefficients r and n in the equation

nraC = (34)

Substituting equation 34 into equation 33 yields
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where Pc and δc are the load and deflection, respectively, at the onset of crack advance.

5.1.2  End-Notched Flexure (ENF) Test.

Figure 13 presents a drawing of the ENF test [32], which may be used for the determination of
GIIc.  The ENF is recommended over other mode II tests, such as the end-notched cantilever
beam [3, 4], because in the former case compliance calibration can be used to reduce the data.
That is, it is preferable to use test methods where one does not have to make any assumptions
about material properties in the reduction of data to obtain Gc (although this is unavoidable in the
determination of mode mix).  The procedure described in reference 33 may be used to determine
the crack length, a, and half-span length, L, for the ENF tests, and data reduction may be
performed by compliance calibration.  Due to possible large specimen-to-specimen variations, it
is recommended that a compliance versus crack length curve be developed for each specimen
that is tested. [34, 35]  To this end, each specimen may be loaded to approximately 50% of its
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predicted fracture load at five different crack lengths.  These include the crack length at which
the fracture test is to be performed and two shorter and two longer lengths.  The crack length may
be adjusted by placing the specimen appropriately into the test fixture.  At any given crack
length, the compliance is obtained from the slope of a linear least squares curve fit of the
deflection versus load data.  Next, a compliance versus crack length curve is obtained, for each
specimen, by fitting a cubic polynomial of the form

3
3

2
210 aCaCaCCC +++= (36)

to the compliance versus crack length data.  When this approach is adopted (as opposed to using
a lower order polynomial), it is important that one screens the resulting curve fits to ensure that
no inflection points exist.  When this occurs, it indicates that there is an error in one or more of
the compliance values and compliance testing of that specimen should be repeated.
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FIGURE 13.  THE END-NOTCHED FLEXURE TEST

Substituting equation 36 into equation 33 and evaluating this expression at the onset of crack
advance yields
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where Pc is the load at the onset of crack advance and B is the specimen’s width.

5.1.3  Symmetrically Delaminated Single Leg Bending Test.

In order to use compliance calibration to reduce as much of the test data as possible, the single
leg bending (SLB) test may be used to determine toughness at an intermediate mode ratio.  The
general SLB test is illustrated in figure 14; the term symmetric SLB (SSLB) will be used at times
to distinguish the case where t1 = t2 and unsymmetric SLB (USLB) will be used at times for the
case where t1 ≠ t2.  A finite element analysis of the SSLB geometry results in GII/G ≈ 0.4; the
exact result depends on the material properties and the test geometry (L/a and a/t). [36, 37]  A
CTE analysis or application of Williams’ mode decomposition procedure [29] yields GII/G =
0.43.  Toughness values for the SSLB test are obtained by compliance calibration in an identical
manner to that used for the ENF test.
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FIGURE 14.  THE SINGLE LEG BENDING TEST

5.1.4  Mixed-Mode Bending Test.

The mixed-mode bending (MMB) test [38, 39], figure 15, may be used to determine the
toughness of the symmetrically delaminated specimens at additional mode ratios.  The procedure,
described more completely in reference 40, is to use the MMB to test at mode ratios, GII/G,
approximately equal to 0.2, 0.4, 0.6, 0.8, 1.0.  Depending on the shape of the Gc versus GII/G
curve, it may also be desirable to perform MMB tests at a mode ratio of approximately 0.9.  An
extensive study evaluating the accuracy of data reduction methods for the MMB test [40] has
found that the singular field expressions for ERR and mode mix are most accurately extracted
from the test data using the expressions:
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FIGURE 15.  THE MIXED-MODE BENDING TEST

In equations 38 and 39, B is the specimen’s width and h is the half-thickness as defined in figure
15.  Also, D is the bending rigidity of the uncracked region, and R is the ratio of the bending
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rigidity of the uncracked region to that of the cracked region.  Details on the determination of D
and R are presented in reference 40.  PI and PII are the mode I and mode II components of the
total applied load, P, and are obtained following the original superposition analysis of Reeder and
Crews. [38]  They are given by
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where WL is the weight of the lever arm and all dimensions are as specified in figure 15.  The
correction factor, χ, used to obtain an effective crack length in equations 38 and 39 is defined as
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where Ef
11 is the flexural modulus in the x direction, E33 is the Young’s modulus in the

z direction, and G13 is the shear modulus in the x-z plane.  Finally, if the CTE analysis or
Williams’ analysis is utilized to obtain the mode mix, one obtains
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5.2  TEST METHODS USED:  SPECIMENS WITH OFFSET DELAMINATIONS.

5.2.1  Unsymmetric Single Leg Bending Test.

The USLB tests may be performed in the same manner as the SSLB tests.  The only additional
consideration is that, for specimens where the upper cracked region becomes thin, geometric
nonlinearities may occur and invalidate the use of a compliance calibration (CC) procedure of
data reduction.  To this end, one can make two checks to ensure that the CC method of data
reduction is valid.  The first check is that the load versus deflection plot from the fracture test
itself is linear to fracture.  To explain the second check, consider that the tests are run in
displacement control.  Thus, CC simulates the growth of a crack at fixed displacement.
Therefore, it is necessary that, at all crack lengths where CC is performed, the load versus
deflection response of the specimen is linear up to the critical displacement.  For the crack
lengths shorter than that at which fracture occurs, this condition is ensured by the linearity of the
fracture test itself.  For the longer crack lengths, linearity may be verified after the specimen has
fractured.  This is done by placing the fractured specimen back in the fixture, adjusting it to the
proper crack length, and then performing a compliance test to that specimen’s critical
displacement.  Generally, this need be done only for the first specimen tested and only for the
longest crack length used during CC.  If the result is satisfactory, other specimens may be tested
in this same geometry; otherwise, a new test geometry is chosen and the process repeated.

For illustration, figure 16 presents a graph of mode mix versus thickness ratio for the SLB test
using various definitions of mode mix.  The material properties of C12K/R6376 graphite/epoxy
presented in table 2 were used for this figure, but little change is observed if the properties for
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other typical graphite/epoxy materials are used.  The FE results were obtained using the
commercially available code Abaqus, licensed from Hibbitt, Karlsson, and Sorensen, Inc.  The
finite element models were similar to those described in references 1 and 37.  For this figure, it
was assumed that L = 2a (cf. figure 14) and a/t = 6.94, where t = t1 + t2.  For the CTE/SF results,
the expression for Ω given in reference 1 was used (the graph of Ω versus thickness ratio that
will result in the singular field solution is presented in figure 23).  The slight differences between
the CTE and the FE results are due to the effects of transverse shear deformations on the ERR.
Predictions for mode mix by Williams’ approach are also displayed.  This figure illustrates that
predictions of mode mix by this latter approach can be quite different from the SF solution.
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FIGURE 16.  MODE MIX VERSUS THICKNESS RATIO FOR THE SLB TEST,
L = 2a, a/t  = 6.94

TABLE 2.  UNIDIRECTIONAL MATERIAL PROPERTIES FOR C12K/R6376
GRAPHITE/EPOXY

Exx = 146.86 GPa Eyy = 10.62 GPa νxy = 0.33 Gxy = 5.45 GPa

Single ply thickness: 1.46 x 10-4 m

As discussed in references 36 and 37, there is a slight dependence of specimen geometry (a/L and
a/t, in addition to t1/t2) on the FE predictions for mode mix in the SLB test.  Thus, in order to
obtain the FE/SF mode mix for use with the test data that is presented, FE analyses were
performed for the precise specimen geometries that were tested.
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5.2.2  Unsymmetric End-Notched Flexure (UENF) Test.

The unsymmetric end-notched flexure test was proposed by Davidson and studied by
Sundararaman and Davidson [37] to evaluate the fracture toughness of bimaterial interfaces.
However, this test may also be used for laminated composites.  The UENF test is shown in figure
17.  Figure 18 presents a schematic representation of the deformation of a homogeneous UENF
specimen.  Figure 18(a) illustrates the cross-sectional deformations that would occur in the upper
and lower materials if the crack were to exist along the entire length of the specimen.  These
same cross-sectional deformations are those that would be predicted if the specimen were
analyzed using a classical plate theory (CPT) approach.  From the relative rotations pictured in
figure 18(a), it is observed that in the physical problem, the leg with the larger bending rigidity
will primarily control the shape of the specimen’s cross-sectional plane at the crack tip.  This is
illustrated in the deformed shape shown in figure 18(b).  Due to the physical material continuity
requirements in the problem, note that the slope of the thinner leg at the crack tip will be less
than would be predicted by a CPT analysis.  This also implies that the percentage of the reaction
force that is carried by the lower cracked region in the figure will be greater than a CPT
prediction would indicate.  Further, for a homogeneous UENF specimen, the above
considerations indicate that a thicker leg on the bottom will result in crack face contact over the
majority of the crack length.  Thus, for all geometries, it is expected that a CPT analysis will not
yield highly accurate results and, for homogeneous UENF specimens where the lower cracked
region is the thicker of the two, an analysis enforcing the contact condition over much or all of
the cracked interface would be required for the prediction of deformation, ERR, and mode mix.
Thus, only geometries where the thicker leg is on top (cf. figure 17) will be considered here.  In
these cases, crack face contact occurs only in the vicinity of the right side support.
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FIGURE 17.  THE UNSYMMETRIC END-NOTCHED FLEXURE TEST
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FIGURE 18. DEFORMATION OF A UENF SPECIMEN:  (a) CLASSICAL PLATE THEORY
PREDICTION, (b) ACTUAL DEFORMATION

For the test data that is presented, the mode mix of the UENF test was first obtained by FE
analysis.  This was also done using the Abaqus FE package.  All UENF geometries were
analyzed using contact constraints between the two cracked regions in the region of the end
support.  To obtain FE predictions for mode mix, the virtual crack closure technique was used.
To obtain predictions for the mode mix using the CTE and Williams’ approaches, the moments
in the cracked regions at the crack tip were first obtained from the finite element output.  To this
end, the load transferred into the top leg through each contact node was multiplied by that node’s
distance to the crack tip to obtain the total moment at the crack tip in the top leg, defined here as
M1 (cf. figure 1).  The moment at the crack tip in the bottom leg, M2, was obtained from static
equilibrium considerations.  These two moments were then used in the CTE and Williams’ mode
mix decomposition procedures.  For illustration, typical results for the moment ratio, M1/M2, are
presented in figure 19a; these results were generated using the material properties for
C12K/R6376 presented in table 2 and all geometries were such that L = 2a and a/t = 6.94.  For
reference, predictions by CPT, where M1/M2 = (t1/t2)

3, are also included.  As indicated above,
CPT underpredicts M2 for t1/t2 > 1 and, as would be expected, the CPT solution becomes worse
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with increasing log(t1/t2).  Figure 19a clearly illustrates why the FE, rather than CPT, results for
M1 and M2 should be used for this test.
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FIGURE 19a.  MOMENT RATIO VERSUS THICKNESS RATIO FOR THE UENF TEST,
 L = 2a, a/t = 6.94

Figure 19b presents the predictions for mode mix by the FE/SF, CTE/SF, and Williams’
approaches for the geometries that were considered in figure 19a.  It is observed that the FE/SF
and the CTE/SF predictions are quite close; the difference is due to the effect of transverse shear
deformations.  As a result of the similar curvatures of the two legs, Williams’ approach predicts
the mode mix for all test geometries to be greater than or equal to 99% mode II.  Similar to figure
16, figure 19b illustrates that predictions of mode mix by Williams’ approach can be quite
different from the SF solution.

As in the case of the SLB, there is a dependence of predicted results on material properties when
the FE method is used, and the results of figures 19a and 19b will be slightly different if a
different graphite/epoxy material is used.  There is also a dependence of moment ratio and mode
mix on the specimen and test geometry.  Thus, for the reduction of the test data, the exact crack
length, half-span length (L), thickness, and thickness ratio of each UENF specimen tested were
used in the FE and other associated analyses.
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The compliance calibration procedure is also used to obtain the total ERR for the UENF tests.
However, a modification to the procedure used for the ENF and SLB tests is required.  The first
compliance test is performed at the longest crack length with the upper leg of the specimen
trimmed such that it ends just above the right side support, as shown in figures 17 and 18.  Each
time the crack length is shortened (by repositioning the specimen in the fixture), the top leg is
trimmed again so that it always ends just above the support point.  This step is required so that
the CC procedure accurately simulates the mode of crack advance.  If the top leg is not trimmed,
then crack face contact outside of the end support will affect the load transfer between the
specimen legs and accurate results will not be obtained (cf. figure 18(b)).  Thus, the fracture test
is performed at the shortest crack length that was used for CC.  To minimize the possibility of
error in the CC process, each compliance test may be performed twice.  Between these two tests,
the specimen should physically be removed from the fixture and then repositioned into place.
The average of these two test results is used in the reduction of the test data.  Finally, the
compliance versus crack length data is fit with a polynomial of the form

3

30 aCCC += (43)

A sensitivity study [40] indicated that, when evaluating the derivative of the compliance versus
crack length curve at the end of the curve, i.e., at the smallest crack length (as must be done for
the UENF test), equation 43 produced results that were more accurate than those obtained using
equation 36.  Conversely, when evaluating ∂C/∂a at the median crack length, equation 36 is
preferable. [34]  All CC tests are performed to approximately 50% of the predicted critical load.
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To ensure that CC is valid, the same two linearity checks are performed for this test as are done
for the SLB.

5.3  TEST SPECIMENS, TEST GEOMETRIES, AND TEST MATRIX.

In this test program, the C12K/R6376 graphite/epoxy material system was used.  The C12K
fibers are similar to HTA, which is commonly used with the R6376 resin for aerospace
applications, and the resin is a homogeneous, single-phase, thermoplastic-toughened system.
Material and geometric properties for this system are presented in table 2.  Only unidirectional,
[0]T laminates were considered.  All laminates were fabricated with a 12.7-µm-thick teflon sheet
at the appropriate location to serve as a starter crack.  No precracking was performed; that is, all
crack advance data were taken directly from the preimplanted teflon starter crack.  All specimens
were approximately 25 mm wide.

The matrix of tests that were performed is presented in table 3.  The specific test geometries were
chosen to (1) eliminate any geometric nonlinearities—this was done by keeping the span lengths
and crack lengths as short as possible but still several times the laminate thickness and
(2) eliminate any effect of transverse compression stresses near the center roller on the perceived
toughness.  This latter issue was addressed by keeping the distance between the crack tip and the
center roller, at the critical crack length, greater than six specimen thicknesses.

TABLE 3. TEST GEOMETRIES

Half- Crack
FE/SF Span Crack Lengths Length

Mode Mix Length Used for CC at Fracture
Test N1/N2* (GII/G)† L (mm) (mm) (mm)

DCB 16/16 0.00 ---- †††† 57.5
SSLB 16/16 0.40 63.5 21.6, 26.7, 31.8, 36.8, 41.9 31.8
ENF 16/16 1.00 63.5 21.6, 26.7, 31.8, 36.8, 41.9 31.8
MMB 12/12 ****  50.8 ---- 25.4
USLB 08/24 0.34 50.8 8.9, 12.7, 16.5, 20.3, 24.1 16.5
USLB 12/20 0.36 50.8 11.4, 16.5, 21.6, 26.7, 31.8 21.6
USLB 20/12 0.43 63.5 21.6, 26.7, 31.8, 36.8, 41.9 31.8
USLB 24/08 0.49 63.5 21.6, 26.7, 31.8, 36.8, 41.9 31.8
UENF 25/05 0.72 63.5 27.9, 31.8, 35.6, 39.4, 43.2 27.9
UENF 20/10 0.89 63.5 27.4, 31.2, 35.1, 38.9, 42.7 27.4
UENF 20/12 0.93 63.5 30.5, 34.3, 38.1, 41.9, 45.7 30.5

* Number of plies in leg 1/number of plies in leg 2.
† Using actual t1/t2 from test specimens (may vary slightly from the nominal result using N1/N2).

†††† Crack advanced suff iciently to take approximately 10 data readings.
** ** 0.20, 0.40, 0.60, 0.80, 0.91, and 1.00.
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5.4  EXPERIMENTAL RESULTS.

5.4.1  Specimens With Midplane Delaminations.

The experimentally determined toughness versus mode mix curve for the C12K/R6376 material
is shown in figure 20.  A minimum of five specimens were tested in each configuration.  The
discrete symbols show the mean of the data and the error bars at each data point represent a
spread of ±1 normal standard deviation.  The critical ERRs were obtained by CC for the DCB,
SSLB and ENF data, and from equation 38 for the MMB data.  A number of different mode
decomposition procedures are presented in figure 20.  The circular symbols are used for the
DCB, SSLB and ENF, and are at the mode mixities predicted by FE analyses.  For the MMB,
square symbols are used and are at mode mixities given by equation 39; as shown in reference
40, this result is believed to be the closest to the exact SF value.  The diamonds show all of the
above data when re-interpreted with Williams’ approach or with the CTE/SF analysis (i.e., these
two methods predict the same mode mix).  For the CTE/SF analysis, this means using equation
32 and Ω = 0, and for the MMB, this reduces to equation 42.  The slight difference in mode mix
predicted by Williams’ and the CTE methods, as compared to the other results, is due to the fact
that transverse shear deformations are ignored in the two closed-form approaches.
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FIGURE 20. GC VERSUS GII/G AS OBTAINED FROM SPECIMENS WITH MIDPLANE
DELAMINATIONS

It is pointed out here that the SLB/SF and the MMB/SF results at GII/G = 0.4 that are presented in
the figure have been kept separate to show the good correlation between the SLB and MMB test
results. [40]  This indicates that either one of these test methods are acceptable.  However, it has
been recommended that both SLB and MMB at GII/G = 0.4 tests be run to verify the data
reduction technique for MMB. [40]  The data sets from the ENF/SF and MMB/SF tests at
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GII/G = 1.0 have also been kept separate.  However, the mean value from the pooled data is used
for displaying the CTE and Williams’ results, and the data is pooled at all locations to determine
standard deviations.  The standard deviations as given by the various data sets examined
individually are in fact quite close, and a detailed comparison is presented in reference 40.  All
lines in the figure are simply a series of straight segments connecting the various mean results.
For all results in figures 20, 21, and 22, the peak load observed in the test was used in the
reduction of data.

5.4.2  Specimens With Offset Delaminations.

Following the development of figure 20, the offset delamination tests of table 3 were performed.
At least five specimens were tested in each of these configurations.  The data from these tests
were reduced in three different ways: (1) FE/SF mode mix; (2) CTE/NSF mode mix; and (3)
Williams’ mode mix.  The CTE/SF mode mix is omitted for clarity; this approach does not give
significantly different results from the FE/SF approach (cf. figures 16 and 19b).  In all cases, Gc

was obtained by CC as described in sections 5.1 and 5.2.  Thus, only the mode mix is affected by
the various data reduction procedures.

Figure 21 presents the data from the specimens with offset delaminations with mode mix
determined by the FE/SF approach and by Williams’ approach.  For reference, the results of
figure 20 are also presented; the discrete data points presented in figure 20 have been omitted for
clarity, but the standard deviation data have been retained.  Note that neither the singular field
mode mix decomposition nor Williams’ approach will result in accurate predictions of
delamination growth for this material.  In fact, if one were to use the data of figure 20 and either
of these approaches to predict delamination growth, in many cases extremely large errors would
be observed.
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Figure 22 presents the data from the offset delaminations with mode mix determined by the crack
tip element/nonsingular field (CTE/NSF) approach.  For reference, the CTE mode mix results of
figure 20 are also presented.  To facilitate the presentation, the results taken from figure 20 have
been displayed by presenting the lines that follow the mean and the standard deviation values of
the data.  It is also pointed out here that when t1 = t2, i.e., for the case of midplane delaminations,
the CTE/NSF and the CTE/SF approach are equivalent, as Ω = 0 for both cases (for this reason,
the distinction between CTE/SF and CTE/NSF mode mix for the midplane delaminated
laminates is unnecessary).  For the reduction of data from the tests of the laminates with the
offset delaminations, an effective Ω has been used in figure 22.
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FIGURE 22.  COMPARISON OF RESULTS:  LAMINATES WITH MIDPLANE AND
OFFSET DELAMINATIONS.  Data reduction by the CTE/NSF method.

Note from figure 22 that if a CTE/NSF analysis is used to interpret all of the data, then, allowing
for experimental scatter, toughness is found to be a single-valued function of mode mix.  That is,
this analysis is found to successfully collapse the data from the various tests.  Figure 23 presents
the effective Ω as a function of thickness ratio that was used in the development of figure 22.
For reference, the singular field-based result, taken from reference 1, is also included.  The
effective Ω was obtained by enforcing the physical constraints [1] that it is an odd function of
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log(t2/t1), that it has a limiting value that is less than approximately 30º, and that it does not
contain an inflection point for t2/t1 > 1.  Within these constraints, the test data was used to
calculate the expression for Ω such that the same toughness was obtained from different
geometries at the same mode mix.  It is emphasized that the use of an effective Ω is not simply a
curve fit of the data.  Rather, this approach implicitly bases mode mix on the ratio of the
concentrated crack tip quantities Nc and Mc, and the necessary scaling normalization is
accomplished through the use of Ω-effective.  Toughness versus mode mix results are then easily
expressed in terms of the nonclassical definitions of the ERR components, as has been done in
figure 22.  It is interesting that the limiting value of Ω-effective is fairly close to the singular
field-based result, and that the primary difference is a more rapid rise in Ω-effective with
thickness ratio to its limiting value.  Structural analyses may now be performed with the CTE
analysis, the effective Ω of figure 23 and the failure locus of figure 22.  This approach assumes
that crack advance will occur when G, at that particular NSF mode mix, reaches its critical value,
Gc.  The NSF mode mix definition accounts for the effect of the geometry and loading on
toughness in the same manner that the classical approach will in materials that have small-scale
process zones, and accurate crack growth predictions will be obtained.  Note that this also
obviates the need for local FE analyses to obtain mode mix.
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6.  GENERAL APPLICATION OF THE METHOD.

The work remaining to be done before this method can be used in general application is to assess
whether the effective mode mix parameter obtained from the unidirectional samples can be used
for all layups and interfaces, regardless of the test specimen stacking sequence.  Preliminary test
results [41] indicate that this method will be valid for 0/0, θ/θ, and θ/-θ interfaces, and based on
this success, it is expected that it will be equally valid for all interfaces.  However, as described
in reference 1, there is some possibility that the definition of the effective mode mix parameter
will need to be expanded to account for the [A-B-D] matrices of the various regions comprising
the crack tip element, as well as for the orientations of the plies immediately adjacent to the
delamination.  Work in this area is currently being performed.  Specifically, a second material is
being tested, and for both materials, delamination growth under a variety of in-plane and bending
loadings is being examined for a variety of interfaces and a variety of thickness ratios of the two
cracked regions.  Emphasis is on delamination between plies in the (0/±45/90) family, as these
are the primary orientations used in practical applications.  In addition to the above, a streamlined
methodology is being evaluated that significantly reduces the amount of testing that is necessary
to determine Ω-effective.  Finally, the method will be applied to typical aircraft structural
geometries, and failure predictions will be compared to the results of the corresponding structural
test.  All of these results will be presented in Part II , scheduled to be published in 2001.

7.  CONCLUSIONS.

An engineering methodology has been presented for predicting delamination growth in laminated
structures.  There are two main components to this methodology.  First, the toughness versus
mode mix relation, and the definition of mode mix itself, is determined experimentally.  The
definition of mode mix is found from the results of a series of delamination toughness tests and is
obtained within the construct of a crack tip element analysis.  Second, the structure of interest is
analyzed using the crack tip element analysis and the experimentally determined definition of
mode mix and then delamination growth assessments are performed.  Note that this approach
obviates the need for locally detailed two- and three-dimensional finite element analyses.

The need for the delamination growth prediction methodology described herein is clear.  For
certain laminated materials, it has been conclusively demonstrated that the classical, LEFM,
singular field-based approach will not accurately predict delamination growth [3-6].  In fact,
considering the size of the crack tip damage in laminated composites in comparison to the
characteristic dimension that scales the near-tip field (generally ply thickness), it is likely that the
classical approach will not work for the majority of materials that are currently being used or that
will be used in the near future.  For these materials, the approach described herein allows a
natural definition of mode mix to be determined for each material system.  In these cases, mode
mix is implicitly defined in terms of plate theory based quantities (Nc, Nc

y, and Mc) that fully
describe the loading at the crack tip, yet which are insensitive to the details of any near-tip
damage.  Alternatively, for those materials where a singular field-based mode mix decomposition
is valid, the above approach will reduce to the classical solution.  As such, the approach
described herein is believed to hold great promise for a successful predictive methodology for
delamination of current and future laminated composites.
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